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FOREWORD

This report was prepared by Advanced Technology, Inc. (ATI)
under contract NAS8-37812 (WBS 1.3.4.2) funding to assess
quantitative methods and measures for monitoring Launch Commit
Criteria (LCC) performance measurement trends. The specific
Technical ‘Directive (TD-002-342-444-0000) directed that a
statistical performance trending analysis pilot study, utilizing
four selected SRB, SRM, ET, and SSME Shuttle measurement types from
the five missions prior to 51-L, be processed and compared to
STS-26 mission data.

To accommodate this technical guidance, under the statistical
uncertainties of small sample theory, representative LCC
measurement types were selected by Marshall Space Flight Center
(MSFC) personnel from the Reliability and Maintainability (R&M)
Office, with contractor support from Boeing Aerospace Operations
(BAO), Calspan Corporation, and }ATI. The guideline criteria
utilized in this selection process placed high priority on the
statistical stability of the candidate measurements, in opposition
to measurement <criticality, to insure that the selected
measurements were representative of the complete measurement
spectrum. As a result, the following measurement types were
selected:

1) Solid Rocket Booster (SRB) Auxiliary Power Unit (APU)
turbine speed (rpm)

2) External Tank (ET) Liquid Hydrogen (LH,) ullage
pressure (psi)

3) Space Shuttle Main Engine (SSME) Low Pressure Fuel
Turbopump (LPFTP) discharge temperature (°R)

4) Range Safety Switch (RSS) safe and arm device (event).

These measurement types comprise three analog and one discrete

class of measurements which range from highly volatile oscillations
to a simple on-off signal.

Once the raw data coordinates were obtained, each set of
measurements within a measurement type was processed to obtain
statistical confidence bounds and mean data profiles for each of
the selected measurement types. STS-26 measurements were compared
to the statistical data base profiles to verify the statistical
capability of assessing:

1) occurrence of data trend anomalies and

2) abnormal time-varying operational conditions associated
with data amplitude and phase shifts.
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1.0 INTRODUCTION
1.1 OBJECTIVE

To accommodate the tasking objectives of the Phase I Launch
Commit Criteria (LCC) Trending Analysis (LCCTA) effort, an LCC
performance trending plan was written which provided a sequential
overview of the major steps involved in this prototype development.
In summary, the development objectives of this proof-of-concept
were oriented toward the:

° Methodology to be used for obtaining the required data
to support development of suitable statistical confidence
bounds and mean data profiles of four selected Shuttle
LCC measurement types from the five missions prior to
51-L.

° Approach to be used in converting trending requirements
and issues into relevant operational algorithms suitable
for LCC trending evaluations.

1.2 B8COPE

To help direct the initial focus of the prototype effort,
current trending techniques, requirements and issues were reviewed
to identify the critical areas of concern. This review indicated
that the primary focus of this effort should be directed toward the
analytical formulation of an efficient "distribution-free"
probability density function (pdf) and associated unbiased mean
estimator for characterizing the time-varying statistical data base
profiles for each selected measurement type.

This primary analytical focus resulted from the acknowledged
realization that time-varying statistical data variations contained
in historical successful mission measurements must be characterized
by pdf’s that are capable of representing the extreme variations
of such data. The problem of selecting a particular form or type
of pdf which best fits an empirical data sample has long been an
open question in descriptive statistics.

In theory, this same problem carries over to the Gaussian or
Laplacian normal probability distribution. That is, no physical
distribution can rigorously be a normal universe, as this
distribution extends to infinity in both directions.

A similar statement applies to any universe whose distribution
extends to infinity in either direction. For this reason, it is
often convenient to approximate the distribution from a random data
sample of the parent population. Nevertheless, the a priori
requirement of specifying a distribution (form) remains an
unanswered question. As a result, a highly intensive literature
search and mathematical investigation was undertaken in the Phase
I effort to identify a satisfactory probability distribution form.
The final selection was a special case of the Gram-Charlier Series
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(GCS) approximation which utilizes the standardized normal
distribution as a generating function.

This basic series is based on the restrictive premise that the
parent distribution has the following properties:

® Moments of all order exist.

° Derivatives of any required order exist with appropriate
continuity.

[ There exists high order contact at the extremities of the

distribution. (See Appendix B, Section B.2.)

Given these properties and the added restriction that the parent
population is defined on an infinite interval, an approximating
distribution can be generated by the sum of a system of independent
skewed frequency distributions of the Gram-Charlier type. In
principle, this series expresses the required parent population in
terms of the derivatives of the standardized normal distribution
with zero mean and unit variance. It also allows for the recursive
series coefficient formulation while maintaining explicit
asymptotic conformity to the central limit theorem.

The notion of extreme measurement variation is also amplified
in the development of the statistical data base mean profiles. The
critical concern is that historical measurement data often reflect
displacements which could be related to design changes or time
sequence shifts in the operational aspects of the elements being

monitored. In statistical terms, these variations appear as
outliers and should not be given full recognition unless these
effects are persistent from mission to mission. To accommodate

this relative statistical mean stability problem, an unbiased mean
estimator was formulated which de-emphasizes the relative time-
varying worth of rapidly changing historical measurement
observations.

2.0 ANALYSIS APPROACH
2.1 CONCEPT OVERVIEW

To achieve a computationally efficient proof-of-concept
assessment of the quantitative methods for monitoring LCC
performance, a statistical confidence bound approach was
conceptualized which comprises both real-time and preprocessing
components. The conceptual overview of these processing components
is illustrated in Figure 2.1-1.

2.1.1 Data Segmentation

From the preprocessing component perspective, the historical
data coordinates, (t, x,), of each measurement within a specified
LCC measurement type were assigned to one of the following data
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segment types:

1) mandatory segment

2) constant segment

3) dropout segment

4) spontaneous active segment.

Under this segmentation criteria, a mandatory data segment is
defined as a critical measurement time interval in which safe
operational amplitude variation limits (redlines) are identified.
By comparison, a constant data segment is defined as a time
interval which has constant amplitude over its entire domain of
definition. In juxtaposition, a data dropout segment is defined
as a time-interval in which the data coordinates have been lost
because of data dropouts resulting from such causes as
telecommunications, computer transfer, etc. Finally, a spontaneous
active data segment is any other time interval not meeting the
above criteria.

Having segmented the appropriate measurements of a given type
from previous successful missions, these individual data segment
intervals can be fit by a proprietary data sampling and smoothing
algorithm. The underlying structure of this innovative algorithm
is designed to characterize oscillatory periodic signals defined
by discrete data points at near real-time data acquisition rates.

2.1.2 Data Segment Fitting Algorithm
To provide this capability the governing periodicity equation,

F(W) = Cos[mWh] - C, Cos[(m-1)Wh] - C, Cos[(m=-2)Wh]-...~-
C,., Cos[2Wh] - C _, Cos[Wh] - C /2 =0
for each measurement segment is solved for the constituent
(harmonic) signal frequencies, W,, for j=1, 2, ..., m. Here, h
is the equidistant data spacing of the respective measurement
coordinates and m denotes the number of distinct periods embedded
in the imposed data coordinates. The ¢, C, ..., C,
coefficients of this governing periodicity equation are
determined such that the linear combination of functional terms

£(t) = A, + 5 [A Cos(Wt) + B, Sin(Wt)]
=l

provides the necessary accuracy of the required empirical data fit.

To accelerate the processing requirements of this imposed
solution for large data sets, an orthogonal vector projection
scheme is utilized with recursive back substitution to compute
the A, and B, scaling coefficients. This process allows for
all computations completed in one step to be used in the next.
In addition, it provides for controlled accuracy assessment
during the computations. If at any point the length of one of



the projected vectors becomes zero (or near zero), the particular
data sample associated with this vector is linearly dependent when
compared to the previous data samples. Thus, this inherent
recognition property provides the capability to perceive the limits
of sufficient data, i.e., number of data points. 1In application,
this process is continued over a finite data set to remove the
possibility of a spurious data sample. If this trend continues,
the projective vector space basis is satisfied and the remaining
coefficients become zero, which provides a critical error deflation
feature.

2.1.3 Data Preprocessing Component

The next preprocessing component phase statistically
determines the unbiased segment mean profile. The formulation
associated with this statistical determination utilizes an unbiased
estimator of minimum variance to de-emphasize the relative time-
varying worth of rapidly changing historical measurement
observations. A detailed explanation of this formulation is
provided in Section 2.2 for those interested in the mathematlcal
details of this unbiased estimator.

2.1.4 Data Confidence Bound Determination
Having determined the unbiased segment mean profiles, a

confidence level, o, is specified to reflect the percentage of
measurements within the defined limits of the statistical

confidence bound profiles. This evaluation utilizes the
"distribution-free" GCS approximation to characterize the sampled
time~varying parent (measurement) pdf. From this pdf, the

time-varying upper and lower confidence bounds are computed.
These bounds are obtained by setting the integral of the pdf

equal to (1—%) and a/2, respectively, and then solving for
the associated upper and lower limits of integration. The

mathematical details of this formulation process are presented in
Section 2.3.

If this bounding process is repeated for
q=tﬁ(j-1)At for j=1, 2, 3, ...

equidistant coordinates, the amplitude values of the upper and
lower confidence bounds are defined. Continuous functional
representations of these bounding profiles (i.e., of the above
noted form) are then stored in the historical mission data base
for future real-time component processing. A similar continuous
representation of the time-varying mean profile is also stored in
the historical mission data base.

It is this integrated data base profile storage organization that
provides the essential interface between the real-time and
preprocessing component environments. Figure 2.1-1 illustrates
this elemental processing feature by the two-way arrows between the
historical mission and trend report data bases.
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2.1.5 Real-Time Data Processing

In real-time data processing, the segmented candidate
measurement to be trended is superimposed on its associated
confidence level profiles obtained from the historical mission
data base and any out-of-bound conditions are identified.

2.1.6 Confidence Bound Application

In application, this confidence level concept provides an
additional data assessment capability. Specifically, various
confidence levels can be specified to identify aggregated
confidence bands or regions which characterize the relative
time-varying measurement amplitudes from their mean measurement
dispersion. This basic confidence bound flexibility is based on
the individual confidence bound proposition that 100(1-¢) percent
of the parent measurement population is expected to fall within a
specified(l1-a) confidence interval.

2.2 UNBIASED MEAN ESTIMATOR

The problem of determining an unbiased mean estimator in the
presence of statistical outliers has eluded many investigators.
For example, the iteration-of-means procedure introduced in the
Phase I LCC performance trending plan reflects this problem.
That is, the order in which the x,’s were taken affected the final
iteration-of-means value. In addition, the procedure outlined
in the above referenced plan imposed the restriction that the
measurements within a segmented time interval had to be
statistically independent due to original plan formulation.

2.2.1 De-Emphasized Relative Measurement Worth

Given the above restrictive provisions, other techniques
were explored for de-emphasizing the relative time-varying worth
of rapidly changing historical measurement observations. A
weighted mean of minimum variance approach was utilized to
accommodate this de-emphasis.

To account for time-varying measurement amplitudes
around a particular time, t,, the influence of previous
and later time variations were considered in this approach.
Figure 2.2-1 illustrates the statistical methodology used to
assimilate these time-varying measurement effects.
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Figure 2.2-1 Assimilation of Time-Varying Measurement Effects
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The amplitude of a measurement is sampled at equally spaced

intervals on either side of the time of interest, t. The
resulting amplitude images are then projected on the amplitude
time line. At this point, the projected images are considered

representative statistical samples of the referenced (i") measurement
variation in the vicinity (neighborhood) of t,.

2.2.2 Weighted Mean of Minimum Variance

Imposition of the constraint that the average image point
for each measurement has the same expectation, combined with the
condition that the linear combination of averages is unbiased and
of minimum variance, completely defines the required mean
estimator.

If one imposes the condition that each image point average

is defined as:
n

3 = 1
X = n X1

.

where x,, is the jth image point of the k" measurement and n is the

total number of image points used to characterize the measurement
variation, the above noted linear combination of X ‘s becomes

X =

M

ax,

where % is the unbiased mean estimator and X, represents

the mean of the i" measurement for k distinct measurements.

For this expression to be unbiased, the a, weights must be
constrained so that

M=

a, = 1.
1

That is, for %X to be unbiased and for each image point average to
have the same expectation, E[X] = E[X,],

K
E(x] = E[Eaﬁh]

7



k
ZaE[x1

k
E[)'Ei]g:la1
= E[%].

Similarly, the variance of this unbiased mean estimator, %, is

VAR[X] = VAR [ iap‘c, ]
i=1

k
El a} VAR[¥X,]

k
= 3 ale?
i=1

where ¢! equals the variance of the i"™ measurement image point

sample variation, i.e.,
2 - _1_ 3 = )2
of = p=1 JZ_:l(xu-x,) .

To determine the values of a, which make the variance of

X a minimum, subject to the condition of unbiasedness, note that

k-1
q+2al- Za,= 1.

Therefore,
k-1
a, = 1-Ya,.
i=1

Thus, the variance of X can be written in terms of a, a,, ..., a_:

k-1
VAR[X] = ‘ alo? + alo?

tl
—

L k-1 22
= S5__4 afo? + [ 1-‘§=:lal ] o;

k-1 k-1 k-1 2

= Y al’ + [ 1-23%a, + ( Za,) ] ol.

i=l i=1 i=1
To determine the values of a; which make this a minimum, one
differentiates with respect to a; and equates the result to zero:

o k-1

dVAR[ X
Ja, " 2[ajof-(1-§lai)o§]

= 2a,0/~2a,0}
= 0.
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2
ac
Hence, a, = 7§3 for j=1, 2, ..., k-1. However, this relationship

is obviously true for j=k. Consequently, one can sum over j=1,
2, ..., k to get

But,

_ 1
aj - i 1 ]
o —
! i=1 0%
k
Upon noting that Y g; is constant for all values of j, the
i=1 {
associated % weights are inversely related to the variance of the
jth measurement variation about its mean. In other words,

measurements with relatively large variances are assigned
accompanying small weights under this unbiased mean estimator.

2.3 CONFIDENCE BOUND FORMULATION

This section summarizes the algebralc derivation of the
upper and lower confidence bound formulation used in this Phase I
effort. 1In theory, this upper bound derivation involves setting

the definite pdf integral equal to 1—% and solving for the upper
limit. Since the pdf is defined in terms of the GCS,

1-%= | z( " o ¥(z2) ] dz

= [™ ¥(z)dz + S [ (-1)" jz" ¥ (z)dz ]
- n=2

which results from C;=1 and C=0. See Appendix A, Section A.4,
for an overview of the mathemat1ca1 details 1nvolved.

2.3.1 Algebraic Rational Approximation

Utilizing Hasting’s rational polynomial approximation (see
Reference 1) to evaluate the standard normal probability,
-2

[® ¥(z)az = —4%—7_[ [3 e?az




becones:

S
P(z,) = [ ¥(z)dz = 1 - ¥(z,)F br' + €(z,)

where
-2
¥(z) = 1 e p = 0.2316419

u NPE] b, = 0.319381530

b, = -0.356563782

r = 1 b, = 1.781477937

1+pz, b, = =1.821255978

b, = 1.330274429

w

le(z,)l < 7.5 x 107
Taking this approximation in conjunction with the relations
[® ¥W(z)az = ¥"(z,) and ¥"V(z) = (-1)"¥(z,)H _(z,)

one obtains the following algebraic expression for the upper
confidence bound:

g(z,) = ¥(z,) %b [1+]n- § S, ‘I’(Z)Hn_(Z)—l=0.
u u g pz, ns n! u 1V ®y 2

Having shown in Appendix A, Section A.2, that the product of the

Gaussian error curve and (n-l) order Hermite polynomial,
H, _,(2,), can be written in the recursive form

Q(zu) Hm#l(zu) = Gm#[(zu)

ﬁ[ 2,Gyp (2y) =Gy, (2,) ]

with initial starting conditions
Gyo(2z,) = ¥(z,) and G/(2,) = 2,G4(2,) .

It follows that the optimal upper confidence bound is a root of
the equation:

5 n ©
az,) = ¥(z,) 2 by [ gz ] - 2 AT Gaa(z)-% = 0.

2.3.2 Numerical Root Evaluation

Before considering the numerical procedure used to extract
this root, it is interesting to note that experience has shown
that only four to six GCS coefficients are generally required to
provide adequate series convergence. The exception is extremely
skewed distributions. Nevertheless, the infinite limit of the
right-most summation can be replaced by a finite integer in
actual application. Consequently,

10



N
g(z,) = ¥(z,) z b"[ﬁ;_zu] Z Y6 (2% = o

where N equals the number of coefficients (terms) utilized in
the GCS characterization.

To invoke computational eff1c1ency, an iteration procedure
originally introduced by Miller in 1956 (see Reference 2) was
used to consecutlvely compute approx1matlons to the desired
root. This determination was obtalned by substitution of
parabolic for 1linear interpolation in the derivation of the
"reguli falsi" or method of false position (see Reference 3) to
produce the iterative equation

2¢,
T pm————y
b+ .[bf-4aic,

Here the sign preceding the radical 1is chosen to make the
absolute value of the denominator as large as possible. This
sign convention results in 2z,,, being selected as the closest root
to z, of the approximating parabolic interpolation

Ziy =2, - for i =2, 3, ....

p(Z ) = ai(zu—zl)z + bl(zu—z) + c = 0.

Since this formulation requires that p(2,) pass through the points (z _,,

g(qz)), (2, g(z,_)) and (q, g(z,)), the coefficients
a, , and ¢, at the 1+1 iteration step are determined from the
condl ions:
c = g(z,)
2
b o (2m20°19(21) ~9(2) 1-(21.-2)) *19(2,.5) =9(2)) )
: (2,,-2)) (2,-2)) (2,,-2,_))
a = (z {- z)[g(z‘ 2) g(Z)] (212 Z)[g(zl 1)-9(2)]
t (2,2-2)) (2,1~2)) (2,2,
To satisfy these conditions, three approximating roots are
needed at each iteration step. This 1mposes the gquestion of
how to select the initial three approximating guesses. Under

the assumption that the LCC measurement distributions are
constructively (approximately) normally distributed, at each
selected evaluation time t, an initial approx1matlon for

z, can be obtained by realizing that

a _ -] _ 1 -]
= ¥(z)dz = —
2 Izl (z) 2T ‘[zl
and then using a rational approximation to determine z. That
is,
2.30753 + 0.270615 S
z =S - +
1 1.0+0.992295 S + 0.04481 S2 [%]

11



where 0<g<0 5, S=\hn[ﬁ-] and e[g-]l< 3 x 1072,

Under this course of reasoning, the initial values of z, and 2z, are
defined by adding and subtracting an arbitrarily small constant
from z,.

Once the a,, b,, and c, coefficients are determined from these
initial starting conditions, the 2z; iterate is computed and
the procedure is reinitialized using z,, z,, and zy in place of z;, z,,
and 2z, to determine the next approx1matlon zZ,. At thlS
point the procedure continues until a root is obtalned within a
prescribed a priori tolerance, i.e., lz,,, - z/ s tol. Table 2.3-1
outlines the underlying algorithmic steps involved in this
procedure.

2.3.3 Summary Remarks

As noted in step 4 of Table 2.3-1, this procedure involves

the evaluation of the radical 4b’-4ac at each iteration step.
Consequently, the procedure has the capability to determine

complex roots, should they exist. Furthermore, the provision
for supporting the determination of the lower confidence bound,
2, is provided in this same algorithmic framework. To

obtain 2z, one need only substitute 2-a for o and impose the
constraint that z, = -2,

The rationale behind these conditions is reflected by the
provision that

¢ =0 g (-1)" 5 #V(2) ] dz.

In summary, an analysis of the convergence properties of
this procedure for the selected Phase I LCC measurements showed
that, on the average, only 14 iterations were required to
obtain the upper and 1lower confidence bounds within a
prescribed accuracy of 0.00032 measurement units. By
comparison, the extreme iteration counts ranged from 1 to 47.
Because of the assumed normal rational approximation utilized
in the initialization process, normally distributed
measurements require only one iteration, while highly skewed
measurement distributions require substantially more.

12



TABLE 2.3-1. MULLER'S ALGORITHMIC STRUCTURE

Given the confidence level «; upper confidence bound equation,
g(t)=0; maximum number of iterations, N ; and required upper bound

(root) tolerance, tol:

Step 1 Establish initial starting iterate guesses:
4
S = ajlln(=s):
\l (aﬂ

2.30753+0.270615 S .

t S - :
! 1.0+0.992295 S+0.04481 S*
t, = £ =67 (§ = arbitrary small constant}
t, = £+
Step 2 Set h, = §;;
§ = [g(t)-g(ty)1/h;;
8 = [g(t,) =g (t,)1/hy;
i=2
Step 3 While isN,, do Steps 4-8.
Step 4 b = §,+h,d;
1
D = (b;-4g(t2)d)2 {(May require complex arithmetic.)}
Step 5 If [b-Dl < b+Dl then set E=b+d, else set E=b-d.
Step 6 Set h = -2g(t,)/E;
p = t,+h.
Step 7 If hi<tol then
OUTPUT (p) {Procedure successful)
STOP.
Step 8 Set t; = t;; (Prepare for next iteration}
tl = tz;
t; = pi
& = [g(t)-g(ty) 1/h;;
8, = [g(t))-g(t)) )/hy;
d = [§,-§]/(h,+h]1;
i= i+l
Step 9 OUTPUT - Method failed after N, iterations.
{Procedure unsuccessful}
STOP.

13



2.4 INTEGRATED BOUND FORMULATION

Having outlined the statistical assumptions and
computational features of the unbiased mean estimator and
confidence bound formulations, this discussion addresses the
integrated implementation aspects of the integrated bound
formulation process. To facilitate an understanding of this
three step process, a diagrammatic overview of these steps is
provided in Figure 2.4-1.

The pertinent implementation aspects of the first step
recapitulates the necessity of considering an unbiased mean
estimator to account for statistical measurement outliers related
to design changes or time sequence shifts in the operational
measurement displacements. Once the mean estimator is
established for a referenced evaluation time, t;, the
aggregated spectrum of assimilated time-varying image points can
be utilized to generate a histogram of the measurement variations
relative to the referenced observation time of interest. This
histogram of aggregated measurement variations is depicted in
Figure 2.4-1 as the second step of the process. The theoretical
aspects of this histogram development will be discussed in
Section 2.4.1 along with Sheppard’s correction for mid-point
class frequencies. '

Before the above noted mid-point class frequencies can be
used in the third step of this process to compute the GCS
coefficients and upper and lower confidence bounds, they must be
transformed into z-coordinate moments by the standard z
transformation of Figure 2.4-1. The theoretical development of
this requirement follows from the general properties of semi-
invariants under a linear transformation. These generalized
properties are discussed in Section 2.4.2 for those interested in
the mathematical details involved.

2.4.1 Histogram Development

Histogram development for characterizing the shape of a
distribution from discrete sample data observations suffers from
the unavoidable restriction that such representations are likely
to exhibit large errors, unless the number of sample observations
is large. This is reflected by the actual construction of a
histogram. The range of the observation data is divided into
arbitrary bins or class intervals, and the number or proportion
of observations falling in each interval is assigned to the mid-
point of the interval. As a result, small data samples often
have class intervals which do not contain any observations unless
the class interval length is increased. At the other extreme,
the selected class interval could be so large that all
observations fall in a single class interval.

14
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2.4.1.1 Application Implications

Regarded in this 1light, the class interval length selected
for each aggregated spectrum of assimilated time-varying image
points affects the smoothness of the resulting histogram. If the
class interval is too small, the histogram is ragged; if it is
too large, the histogram is over-smoothed and 1nformation is

obscured. Although important, the influence of histogram
smoothness is somewhat minimized by the constructive formulation
of the current application. Fundamentally, the 1least squares

minimization imposed on the form of the GCS (see Appendix A,
Section A.3), combined with the constructive addition of
assimilated time-varying image points, diminishes this effect.

In recent years, this smoothing effect has received
increased attention. For example, Rudemo (see Reference 4) has
developed automatic smoothing estimation methods from the
probability density kernel, by letting W(x) be a nonnegative,
symmetric weight function, centered at 2zero and integrating to
one. Under this method, W(x) can be the standard normal density
function so that

W,(x) = % W(%)

is a rescaled version of W where h is the class interval

bandwidth of the estimating function. As h approaches zero, W,
becomes more concentrated and peaked about zero. As h approaches
infinity, W, becomes more spread out and flatter. Under the

assumption that W(x) is a standard normal density, W (x) is a
normal density with standard deviation h.

In general terms, if %, x,, ..., %X, is a sample drawn from an
unknown pdf, f, an estimate of f is given by

=
M=

f.(x) = W, (x-x,) .

—
"
-

Such a function 1is called a kernel probability density estimate,
since it consists of the superposition of "hills" centered over
the sampled observations. In the case where W(x) is the standard

normal density, W,(x-%) is the normal density with mean x, and standard
deviation h.

In general, the bandwidth parameter, h, controls the
estimating function smoothness and corresponds to the class
interval length of the histogram. Theoretically, an optimum
bandwidth value can generally be established under this approach
by defining an a priori smoothness criteria, providing the number
of sample observations are large enough to support the imposed
criteria.

16



This histogram smoothing methodology, among others, was
investigated during the Phase I effort. The conclusion was that
all such approaches provided 1little if any benefit over the
straight GCS minimization property augmented by assimilated
time-varying image point construct. In fact, certain
combinations of circumstances provided significantly worse
histogram estimates.

2.4.1.2 Constructive Histogram Development

Under the realization that the basic serial GCS gives the
frequency function in the form

N
¥(z) = X a¥(z),
n=0

where the various coefficients are expressed as moments or
semi-invariants, the concern over histogram development
methodology has a secondary effect. The important consideration
is that moments are exclusively expressed as definite integrals
which are often difficult to determine in extremely skewed
distributions. Moreover, unless the observations are numerous,
it is generally impossible to compute moments of higher order
than six. In the current application, this results from the
large errors arising from the random sampling and measurement
variations about the unbiased mean estimator. As a rule of
thumb, it is generally useless to compute moments from a
histogram of higher order than four to six when the number of
individual observations is less than 400 to 500. This rule is
once again confirmed by the assimilated time-varying image point
observations; only the 1lower 1limit must be extended to
approximately 460 for this application.

Failure to abide by this rule results in exhibiting a some-
what "poor fit" to the originating observation data and often
gives rise to negative frequencies at the extreme tails of the
associated GCS distribution. From a purely practical consider-
ation, this last objection has little effect on the upper and

lower confidence bounds, because the originating observations at
the distribution extremities are very few in number. As a re-

sult, the constructive histogram development approach implemented
in the Phase I effort divided the observation data into class
intervals centered over the unbiased mean estimator in such a way
that at least every interval contained one or more observations.

2.4.1.3 Adjusted Method of Moments
In basic statistics, the k"™moment of a particular frequency is

defined as the product of the frequency times the k™ power of the
distance about which the moment is required. To utilize this

17



definition to evaluate the moments of a relative histogram about
a selected point, one is forced to assume that the various
histogram frequenc1es are concentrated at the mid-point of their
respective class intervals. In addition, the problem of
determining a reference point about which to take moments that
produces a pre-assigned first moment

N
251,
= I
M =5
2. £
jal
remains an open issue, since the S, distances are unknown
variables. However, the denominator of the above moment
expression equals 1.0, given that the f£;’s are relative
histogram frequencies. The solution to this problem can be

further motivated by letting the distance between A, the point
about which the moments are known, and B, the point about which
they are required, be d. Then, if the distance of any hlstogram

frequency, f;, from A is X;, and from B is x;, X x;=X,-d and x (X, d)

To illustrate how the above distance relationships can be
used to evaluate d, consider the hypothetical histogram data of
Table 2.4-2. In this illustrative data sample of 1,000
measurements, the class interval length is 5 measurement units
and the imposed unbiased mean estimator equals 0.480. The
numbers -4, -3, =2, ... in column (3) are the respectlve
distances from the class 1nterval mid- p01nt values from d, in
terms of the unit of grouping. By forcing the condition that
the unbiased mean estimator, &, must equal M, the expression

X- -d

J h

is imposed where h is the assigned histogram class interval

length. Therefore,
N N -d
- 3 s, z[ ]«

& 2
[ [ > Xjfj) - ]

from the fact that the f/’s are relative frequencies, i.e.,

T

N
Zﬁ=1
Jl
Consequently,

N
= 5 Xf, - h&.

=l

—

Therefore, the adjusted class interval distance is
d = 79.400 - (5)(0.480) = 77.000

for this illustrative example. As a result, the totals of
columns (4) to (7) are the respective first, second, third, and

fourth discrete moments about X.

18



Table 2.4-2 Adjusted Method of Moments
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Recalling the assertion of Section 2.4.1.2 that moments are
exclusively expressed as definite integrals, a correction for
treating hlstogram observations as concentrated frequencies at
the class interval mid-points will be discussed in the remainder
of this section. The theoretical aspects of this undertaking are
focused on the desire to calculate the magnitude of discrete
momentdédjustments so that the true moment magnitudes can be
assesse

Given that the values of the discrete moments, M, are
obtained from finite sums and not as definite integrals, they are
subject to certain adjustments if one wishes to express them as
continuous moments. The magnitudes of these adjustments can be
computed from well-known formulas from the theory of numerical
quadrature (see Appendix B) if the frequency function and its

derivatives vanish for =-o and x=+ow, The English
mathematician, Sheppard, has developed the following correction

formulas for the transition from discrete (M,) to continuous
Uﬁ) moments:

By = M
K =N
- h’
=M -1z M
h2

7h*
M, + 325 M

_ 5h? 7h*
;% = Ms"‘E_ M3+-7ﬁ? M1

k
Moo= g[}g](z‘ n~1)BM,_h"

where h equals the assigned class interval length and the B,
coefficients are the Bernoulli numbers generated by the recursive

form
1+(]1<]Bl+( K)B+.. .+( K55 ]Bk_z

k-1 (kgl]

with starting value Bg=1.

These correction formulas can also be used po assess ;he

effects of roundoff errors. For example, the third correction
2

formula shows that a mean error of % in x affects M, only as %%. In

summary, Sheppard’s corrections emphasize the fact that the

method of moments works with curve areas instead of curve

ordinates.
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2.4.2 Semi-Invariant Linear Transformation Properties

The evaluation of the GCS coefficients (using the semi-
invariant relatlonshlps outlined in Appendix A, Section A.4)
defined by the moments in the x~coordinate (measurement) system
must be transformed into z coordinates by the transformation,

_ X=X

r4 -
This 1mp11es both a change of origin and scale. Specifically,
the origin is transformed to z=0 and the scale is altered by the

scaling factor l, where ¢ is the parent measurement population
standard deviation estimate.

Denoting the operator form of the x-coordinate system semi-
invariants by A (x), N (X), N(X), ... with transformed origin
N(2), the general linear transformation z=ax+b becomes:

N(2Z) = N(ax+b)
= aN(x)+b
A, (2) = \,(ax+b)
= a’\,(x)
Letting A (x) = & and A(x) = ¢?,
N(2) = aR+b

N (2) = a%l.

Since the coordinate system of reference (z system) must have a
zero mean and unit variance, \(2)=0 and \,(z)=1 so that

ag+b
ag

o
1.

From this relationship a= 3 and b= -%, which corresponds to the
above transformation form.

Moreover, N(z) =1

Consequently, the following simple rules can be used to epitomize
the general semi-invariant computations:

M(x) for all values of j greater than 2.

) Set A\ (x) = R the unbiased mean estimator.

] Compute A(x) for all values of j equal to or greater
than 2. The numerical values of these paramenters

divided by ¢, for j=2, 3, 4, ... are the semi-
invariants of the histogram frequency in the z system of
the GCS.
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3.0 DEVELOPMENT FINDINGS
3.1 DATA TRANSFER COMPLICATIONS

To accommodate the data transfer requirements of the Phase I
effort, the individual raw data coordinates for each measurement
had to be identified and transferred to 1.2 megabytes, 5 1/4 inch
diskettes. Rockwell International, Inc. was tasked to collect and
transfer this mission data to ATI. This data included the
referenced missions 51-I, 51-J, 61-A, 61-B, 61-C, and the STS-26
mission measurements used for proof-of-concept trending.

The raw data coordinates associated with these six missions
constituted a data storage requirement of approximately 100
megabytes of data. Given that there were 17 individual
measurements involved with the four different measurement types per
mission, each measurement represented an average data storage of
980 kilobytes.

During the verification of data readability, it was determined
that there existed time gaps in the acquired data. This problem
was attributed to data dropouts resulting from such sources as
telecommunications, computer transfer, etc. To overcome this
problem, numerous data corrections were required. To save time and
effort, ATI was directed by Mr. Pizzano, chief of the MSFC
Reliability and Maintainability Engineering Division, to consider
only measurement data from T-600 seconds to T+600 seconds. As a
result, all measurements were processed in this directed time
interval during the data reduction phase of this effort.

3.2 SOFTWARE PARAMETER TUNING

During the early phase of prototype software development, it
was recognized that individual confidence bound profiles would
exhibit sufficiently different spatial behavior to warrant
definition of specific processing parameters. To reconcile this
acknowledgement, a parameter declaration option was included in
the Parameter File Generation (PARMGEN) software module for
individual segment processing parameter specification. In
retrospect, the fortuitous inclusion of this option was confirmed
and utilized for confidence bound segment profiles involving
measurement variability.

To illustrate the rudimentary effects of confidence bound
sensitivity, consider the tabular spectrum (Table 3.2-~1) of image
point generation parameters used to compute 97 percent confidence
bound profiles for the highly variable SRB APU Turbine Speed LCC
measurements. Assessment of the experienced confidence level
bounds associated with various parameter combinations is summarized
in Figure 3.2-1. Here the maximum and minimum deviations from the
stipulated confidence level are the 50 and 26 image point cases
shown graphically in Figures 3.2-10 and 3.2-6, respectively. 1In
terms of percent confidence level variation, these same parameter
combinations exhibit confidence bound differences of only 1.52 and
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to Image Point Parameter Specification

Table 3.2-1 Effects of Confidence Bound Sensitivity
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-0.16 percent, relative to the stipulated or baseline confidence
level.

It should be noted, however, that close scrutiny of the
graphical measurements of Figures 3.2-2 through 3.2-12 reveal
that mission 61-C has one measurement with far less data
resolution than the others. Removal of this questionable
measurement only affects the lower confidence bound profiles in
a narrow band around the time periods t=-18.70 and t=-17.07
seconds and substantially leaves the average percent of in-bound
measurements unaltered. This provides further evidence of the
unbiased mean estimator efficiency.

Similar spectral results were obtained from the ET LH,
Ullage Pressure and SSME LPFTP Discharge Temperature
measurements. By comparison, the RSS Safe-and-Arm Device is of
particular interest from a proof-of-concept standpoint in that it
represents a binary on-off signal. Statistically, this type of
measurement can only produce variation during its switch-over
cycle whenever the phase shift timing is different between the
various measurements. This aspect was not analyzed in this Phase
I effort because it would have required the specification of
infinitesimal At distances for the image point processing
parameters, as well as the parameter used to define the adjacent
distance between t; confidence bound profile evaluations.

Nevertheless, it is a surprising accomplishment to statistically
provide such confidence of measurement samples utilized in this
proof-of-concept effort.
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3.3 PROTOTYPE SOFTWARE COMPOSITION

Having demonstrated the statistical adequacy of experienced
confidence 1level predictions and profile shaping parameter
sensitivity, this section addresses the prototype software
composition.

As with most prototype software development, there existed
two overlapping and conflicting concerns: the desire to maximize
code efficiency and the necessity to achieve recognized software
clarity through relational code structures. To overcome these
primitive code development concerns, the concept of establishing
a subjective code quality metric was introduced. 1In this context,
the term metric is defined as a measure of the extent or degree to
which a given program segment (subroutine) exhibits each of the
above concerns. This subjective code development framework also
aided the mathematical formulation task in that algorithm
formulation refinements could be correlated to the implemented
software efficiency and clarity.

At this point, attention is directed toward the preprocessing
and real-time software components introduced in the concept
overview of Section 2.1. As indicated in this section, the
preprocessing software component is responsible for data reduction,
segmentation and data conditioning tasks needed to reduce the LCC
measurements of a given type into a usable data format for
statistical data assessment. It is this data conditioning
mechanism that gives the overall process its efficiency in such a
demanding computational environment.

AFigure 3.3-1 provides a summary of the module level

interaction used in this prototype software implementation to
structure the above noted processing requirements.
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3.4 PROOF-OF-CONCEPT TRENDING RESULTS

During this phase of the effort, applicable confidence level
segment profiles were generated for the four selected LCC
measurement types from the five missions prior to 51-L. Then
attention was directed towards determining the confidence level
sensitivity of each segment profile. To assess this sensitivity,
the average percent of measurements within the respective
confidence bound profiles was determined. Graphical substantiation
of this sensitivity was also provided by looking at the confidence
interval distance as a function of segment time and confidence
level uncertainty for each applicable data segment and measurement

type.

Once this activity was completed, the relevant LCC trending
reports (graphic displays) associated with the applicable STS-26
measurements were induced and analyzed for trend anomalies.
Indicative trending results for selected STS-26 SRB APU Turbine
Speed, ET LH, Ullage Pressure and SSME LPFTP Discharge
Temperature measurements are graphically presented in Figures
3.4~-1 through 3.4-3 for 95 percent confidence 'level bound
profiles. The image point parameter specification used for each
of these figures is provided below:

1) Delta distance from H equals 0.01562.
2) Distance between adjacent t,’s equals 0.03125.

3) Number of assimilated image points per measurement
equals ten.

In Figure 3.4-1, the peculiar (alternating) phase shifts of
the selected STS-26 measurement relative to the upper and lower
confidence bound profiles appears to reflect a shifted turbine
speed start-up sequence on the STS-26 mission. Another related
phase shift phenomenology is illustrated in Figure 3.4-2. 1In
this instance, the upper and lower ullage pressure confidence

profiles appear to have a shorter period than the selected STS-26
measurement. This spatiotemporal phenomenon appears to be
related to tank time/temperature differences between individual
mission launch environments. Another point to be considered
regarding the ullage pressure assessment is that only 15
measurements were available, i.e., three measurements per
mission, over five missions.

In reference to the SSME LPFTP Discharge Temperature
trending assessment of Figure 3.4-3, it should be noted that both
Channel A and B data (i.e., with markedly different data
resolutions) were used in this STS-26 Channel B characterization.
By comparison, the pursuant RSS Safe-and-Arm Device trending
assessment of Figure 3.4-4 shows no upper and lower confidence
bound profiles because the binary on-off signal (measurements)
lack statistical variance. See Section 3.2 comments for added
clarification.
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Further illustrative results are provided in Figures 3.4-5
through 3.4-7 which show the upper and lower confidence bounds
superimposed on the generating measurements. It is of particular
interest to note the in-phase measurement grouping of Figure 3.4-
5 within the approximate time interval -19.8 to -15.5 seconds.
Another interesting peculiarity is noted in Figure 3.4-7 where the
Channel B measurement of Main Engine One associated with mission
61-A appears as a statistical outlier.

To check the confidence level sensitivity associated with the
measurements depicted in Figures 3.4-5 through 3.4-7, equidistant
time cuts with 0.250 spacing were constructed over the indicated
confidence profile intervals. Then these intervals were evaluated
and the averaged proportion of in/out measurements were used as the
actual confidence level. These values were 96.3, 95.8, and 95.01,
respectively, for the measurements of Figures 3.4-5 through 3.4-7.

4.0 CONCLUSIONS AND RECOMMENDATIONS
4.1 CONCLUSIONS

It has been demonstrated that the GCS is a "distribution-free"
pdf with explicit asymptotic conformity to the central 1limit
theorem. In addition, the capability to generate highly accurate
upper and lower confidence bound profiles from this methodolody has
been established. Consequently, it can safely be stated that this
proof-of-concept is substantiated.

4.2 RECOMMENDATIONS

Given that the concepts of an LCC measurement population and
the selection of random measurement samples are basic to this
inductive LCCTA methodology, it is recommended that the Phase I
effort be proceeded by adding expanded LCC measurements of selected
types from previous missions. To help reveal any underlying
idiosyncrasies embedded in these measurements due to peculiar
operational phenomenologies or design changes, it is further
recommended that the aggregated bound variations from mission to
mission be assessed to identify any mission/measurement drivers.

In addition, it is recommended that the Phase I prototype
software be refined and integrated into a self-contained package
to support the above processing requirements. This activity should
also include the preparation of full-user software and methodology
documentation to permit potential integration of this trending
technique into other systems and applications.
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APPENDIX A
STATISTICAL FORMULATION
A.1 Historical Overview

The primary mathematical focus of the Phase I proof-of-concept
effort was directed toward the development of a "distribution-free"
characterization of the time-varying statistical confidence bounds
associated with historical Launch Commit Criteria (LCC) measurement
data profiles. Once developed, this capability provides the
opportunity to assess the occurrence of potential measurement data
anomaly trends and other abnormal operational conditions relating
to erratic data amplitude and phase shift variations.

Since the statistical data variation contained in historical
successful mission measurements must be related to aggregated time-
varying probability density functions, the attainment of these dis-
tribution parameters are of paramount importance to the stability
of the resulting confidence bound assessment. The capability to
characterize these distribution parameters is set in the early sta-
tistical investigations conducted by Gram (see Reference 5). 1In
this basic research, Gram showed that an arbitrary frequency dis-
tribution, defined on an infinite interval, can be generated in
terms of the sum of independent frequency distributions. It was
also expounded in this original work that the normal symmetrical
Gaussian error curve is but a special case of a more general system
of skewed frequency distributions which can be represented by an
approximating series expansion.

It is also interesting from a historical perspective to note

that Thiele confirmed this far-reaching idea in 1887. The sub-
stance of this confirmation was later published in a book entitled,
"A General Theory of Observations" (see Reference 6). Among the

added frequency distribution achievements of Thiele was the intro-
duction into statistics of the notion of moments, which he gave the
name "seminvariants." Subsequent statistical literature usage of
this term is "semi-invariants." By means of these semi-invariants,
Thiele illustrated the relationship between sample data histogram
frequency approximations and the series expansion of Gram’s
arbitrary frequency distribution.

In addition to Thiele’s work, the Swedish astonomer C. V.
Charlier introduced an efficient computational methodology for
expressing the various distribution parameters from Thiele’s semi-
invariants. This was accomplished by the utilization of both
orthogonal functions and integral equations. Thus, this series
expansion was designated as the Gram-Charlier Series (GCS) in the
subsequent statistical literature of the time.

With this historical background, the specious question of why
this series expansion has not received the attention it deserves
in the current literature is more speculative. The most probable
reason is the fragmentary and unsystematic manner in which it was

developed.
A-1



A.2 Mathematical Background

~ To place this GCS analytical development in its proper
orientation, a remarkable functional property between Hermite

polynomials and the repeated differentiation of the Gaussian error
curve,

2
¥(z) = % e?

exists. Denoting the various derivatives of ¥(z) by

k
¥(z) = S5 (¥(2)

for k=0, 1, 2, ..., we obtain the following relations:
) 1 =
¥O(z) = ¥(2) = == e?
(2) (2) ox ©
Wez) = - z¥(2)
¥W(z) = (22-1)¥(2)
¥W(z) = - (2'-32)¥(2)
¥Wiz) =  (2%-62%+3)¥(2)

Given that these derivatives are represented as the products of
polynomials of z and the Gaussian error curve itself, it is
only natural to ingquire about the functional polynomial forms
involved. As it turns out, these polynomials are known as
Hermite’s polynomials from the name of the French

mathematician, Hermite, who first introduced the recursive
formulation,

Hp(2) = 2zH,(2) - nH,,(2)

for this class of orthogonal polynomials. Upon utilizing this
recursive formulation with starting values,

Hy(z) = 1 and H|(2) = 2z,




the successive polynomial forms:

Hy,(z) = 2z%-1
Hy(2) = 2z3-3z

H,(z) = z*-622+3

are exhibited that are contained in the various derivatives of
the Gaussian error curve.

From a numerical computation point-of-view, it is
convenient to recursively use the expression

Goui(2) = o7 [26,(2) - G, (2)]
together with the starting values
Gy(z) = ¥(z) and Gi(z) = zGy(2)
to obtain the general form

¥0(z) = ¥(2)Hy(2z) = Gy(2)

¥W(z) = -¥(z)H(z) = -G/(z2)
¥9(z) = ¥(z)H,(2z) = 2G,(2)
¥ (z) = (-1)"¥(2)H,(2) = (-1)"n!G,(2)

of the Gaussian error curve derivatives.

Before addressing the generation of the GCS, it is
necessary to discuss some important integral equation
relationships between the Hermite polynomials and the various
derivatives of ¥(z) or ﬁm(z). To this end, consider
the following series of functions:

¥W(z), Wiz), ¥¥(z), ¥¥(z), ...
Hg(z)l Hl(z)l Hz(z)l Ha(z)l LI
where

W(z) = (-1)" ¥(z) H(2)



with
Lim (¥(z)) = 0 for n=0, 1, 2, ....
z—b

To geometrlcally illustrate these relations, Figure A-1
contains the first four derivatives of ¥(z) as well as ¥(2)
itself in composite form. Clearly, ¥(z) and all its
derivatives of even order are even functions of z, while all
the derivatives of odd order are odd functions of z.
Furthermore, ¥(z) is a single valued positive function with
maximum value of i%ﬁ at 2z=0 with points of inflection
at z=:1 which approach the abscissa axis asymptotically in both the
positive and negative directions. With regard to the first
derivative,

¥(z) = -¥(2)H,(z),

the maximum and minimum values are located in the nelghborhood
of z=-0.9 and z=0.9, respectlvely, with similar asymptotic tail
propertles. By comparison, the second derivative possesses a
minimum at z=0 and the third derivative has approxxmate first
minima and maxima at 2z=-0.7 and 2z=0.7, respectively, while
maintaining the requlred asymptotic ta11 property. This same
geometric behavior is illustrated for the fourth derivative.
In this case, a major maximum at z=0 is attained and Q“Rz) crosses
the abscissa axis from positive to negative in the neighborhood
of z=:0.75.

As a result, these functional characteristics resemble
the sine and cosine functions encountered in Fourier series

harmonic analysis. This same analogy relates to the functions
¥W(z) and H (z) contained in the above noted
series. That 1is, these functional forms characterize a
biorthogonal system in an infinite interval. In mathematical

terms, such biorthogonal functions satisfy the following
conditions:

1) All functions are real and continuous over their
plane of definition.

2) No function is identically zero in its plane of
definition.

3) Each pair of functions satisfy the integral relation:

Ifwﬂm(z)Wsz)dz=O for n#m.

To prove this self-evident relation, note that
¥ (z) = (-1)™¥(z)H,(z) and ¥™(z) = (-1)™¥(z)H_(z) so that

I Ha(2)¥™(2)dz = (-1)"[" H,(2)H,(2)¥(z)dz
= (-1)“'mjf;nn(z)wmﬂ(z)dz.
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Since these integral equations hold for all values of m, n = 0,
1, 2, ..., it is only necessary to prove the proposition for n>m.

By the application of integration by parts
I7 B, (2)¥7(2)dz = Hy(2) 8" (2)F, - |7 H(2) ¥ (2)dz

where the above notation, Hg(z), denotes the first derivative of

H,(z). Clearly, the first term on the right side of the above
equation reduces to 0, since im”Rz)=0 for z=to and because the
order of H (z) is lower than ﬁm(z). Consequently,

]:nm(z)w‘"’(z)dz = -[:Hg’(z)w‘“‘”(z)dz
= [T H2(2)¥"?(2)az

= -[" 19(2)¥" ¥ (z)az

by three repeated applications of partial integration. If this
process is continued m+1 times,

I° B (2) ¥ (z)az = (-1)™'[" H®(2)¥""(z)az.

Since H_ (z) is a polynomial of m"™ degree, its m+1 derivative
is equal to zero, which provides the required proof that:

[° H_ (2)¥(z)dz = 0
-QHm
for all values of m and n where n#m.

If n=m, exactly the same procedure may be utilized, but

the partial integration process is stopped after the n'
integration, i.e.,

I” H(2)¥(z)az = (-1)°]" 1P (2)¥(z)az

after replacing m by n and noting that ¥™(z) = ¥9(z) = ¥(z).
However, the n'" derivative of the n'" degree polynomial, H (z), has
the constant value n! for all n=0, 1, 2, ....

Therefore,
(-1)"n! (o -

" H (2)¥(z)dz = =L (" e24dz = (-1)"n!
JA oz

as a result of the standard normal distribution property

2

-2
%I:’e 2 qz=1.



A.3 Weighted Square Error Coefficients

Given the biorthogonality property between the functions

ﬁm(z) and H_ (z), a generalization of the original series
introduced by Gram will be derived which minimizes the weighted
square error of the approximating probability density function

(pdf).

To facilitate this development, it is appropriate to
consider a special case of Gram’s original series which
utilizes the Gaussian distribution as a generating function:

#(z) = Sa¥"(z).
n=0

To evaluate these coefficients in the least squares sense,
consider the following minimization condition:

@(z)-ﬁanw‘"’(z) 2
n=0

W(z) = dz = Min.

¥ (2)

-

That is to say, the coefficients are determined such that the
sum of the squares of the differences between $(z) and the
approximating distribution series is a minimum.

To accommodate this solution, note that
(o [] e n
Zoan‘l'"(Z) = ZU(-l) a¥(z)H (2).
ns= ns=l

On the basis of this condition,

Sa ¥ (z) )
00" —1)\0
6(2) = o W@ 5 (-1)"aH, (2)

so that

W(z) = ‘[Q #(2) _ G(2) 2dz
‘ o L A¥(2)

(7T 1821 _ ,#(2)G(2) 2
_I_w ¥ (2) 2 ot [G(2)] ]dz.

To minimize this expression, impose the standard least squares
condition that
W(z)

3a, = 0 for j=0, 1, 2, ...:

<© 2 > ©
0= aa?j ° B2l g, - g m 22162, 4 2 I t6(z)1%az.

-® ‘I’(Z) aaj -® J‘I’(_Z) i




Clearly, the first 1ntegral on the rlght -hand side of this
equation equals zero, since the 1ntegrand is not a function of
a. Furthermore, taking the partial derivative with respect to

a, under the integral of the second right-hand term,

#(z) 6(z2), _ _ [ &z o ®  n
_w@ 53, dz 2.[_@“’_(2_) 53, [ ¥ (2) ngo( 1)"a H (z) ] dz

= -2] (- -1)’8(z)H,(z)dz.

Similarly, the last term becomes:

aG(z)

]: 5%1 [G(z)]%dz = j: 2G(z) dz

@

2[ ¥ (2) %(-1)“aan(z) ] [ (-1)!¥(2) H,(z) ]dz

-0 -

©

2] niﬂ(-1)“an\1'(z)u,,(z) ] [ (-1)jHJ(z) ]»dz

-0 &

@®

2 S (-1)"a ¥¥(2)H (z)dz
n=0

= i1
2aj!

from the biorthogonality property between Wmuz) and H (z).

Equating these integral results to zero and solving for a;, one
obtains the following coefficient relationship:

a, = 3 1’] _¥(z)H(z)dz for j=0, 1, 2

'\ J=0, ’ (AR REE
Substituting C I §(z)H(z)dz, one obtains the standard GcCS

approximation form

#(z) = 5 (- 1) "= “w‘“’(z)

n=0

See Korn for an analogous expression (Reference 7).
A.4 Physical Coefficient Interpretation

From a physical coefficient interpretation, two
mathematical concerns must be explored and validated. First,
one must illustrate that the individual GCS coefficients exist
for convergence, and second, that the series has the necessary
properties to become a probability density function (pdf).




In theory, the existence of the series coefficients follow
if the first two derivatives of &(z) are finite and continuous
in the infinite interval and both of these derivatives vanish
at z=tow, In more precise mathematical terms, the series
converges at all points of continuity if #(z) is of bounded
variation. A most interesting discussion of the convergence
properties of this general type of series can be found in
Cramer (Reference 8).

To illustrate the second concern, consider the approximating
GCS:

® c
#(z) = 3 (-1)"

n=0

¥ (z)

where

c, = ]:!'(Z)Hn(z)dz.

Given these weighted square error minimizing coefficients, the
existence of these coefficients and the necessary conditions
for a pdf can be unified.

Since it is necessary (but not sufficient) to have
<]
I_mé(z)dz =1

for $(z) to be a pdf, it follows that

@©

1 = I [ $(-1)" :—‘,‘ ¥ (z) ] dz

n=0
-

© C ®
E; [ 5% ‘[ ¥(z)H,(z)dz ]

-

by taking the integral under the sum and then utilizing the
identity that ﬁm(z) = (-1)“W(z)1%(z). This integral sum
interchange is valid if and only if the referenced series is
convergent. By employing the biorthogonality property between

¥ (z) and H,(z);

«© = . e
|7, v, (az = [ 97 £3F AZgr 2 % -

Since the GCS is convergent, the necessary condition for &(z)
to be a pdf imposes the condition that C,=1.

A slightly different type of investigation can be used to
access the implications of the remaining coefficients. Here
the statistical terminology of moments will be extremely
useful. In this terminology, the quantity

u (b) = E[(2z-b)"]



(when it exists) is called the k" moment of the random
variable 2z about b. In integral terms, this statistical
expectation operator becomes:

E[(z-D)*] = [ (z-b)* f£(2)dz,

where f(z) is a pdf. Whenever b=0, the expectation E[2*] is
written as

b = (0) = E[24] = [7 2 £(z)az

to denote the k™ moment about z=0. In addition, the first
moment of a random variable about its expectation E[(z- u)]

is equal to zero. To deduce the implication of this statement
utilize the linearity property of the expectation operator
(i.e., E[ax+by] = aE[x]+bE[y]) to obtain:

E[(z-n)] = E[2]-E[y] = O.

The last step of the above reduction results from the fact that
the expectation of a constant equals that constant, e.gqg.,

Elp ]=un.

In distribution terms M, provides a measﬁre of the

distribution centering or expected location. 1In phy51cal terms
B, corresponds to the distribution center of gravity. To

illustrate this point, let the z-axis be thought of as a bar
with variable den51ty. Under this interpretation the density
of the bar at any point is given by f(z) so that ¥, = E[2]
is the center of gravity of the bar. Therefore, u may be

thought of as a central value of the distribution.
Consequently, moments of a distribution about their expected
value are called central moments.

Mathematically, the second moment E[(z-upz] is called the

variance of the distribution and is often written as ¢2.
To interpret the phy51ca1 1mp11catlons of this terminology in
terms of an arbitrary distribution, f(z),

o2 = E[(z-1)°)
= |”_(z-w)’f(2)dz
= [7 (z%-2zu+w?) £(z)dz
= |” 222 (2)dz-2u [ zf(z)dz+ulf £(z)dz.
Since [wa(z)dz=1 for £(z) to be a pdf, the terms

p = |" zf(z)dz and u, = [ zf(z)dz
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are respectively the first and second moments of f(z). Back
substitution into the above expection:

°z=”2-2”12+”|2=”2_”12'

As a result, ¢ is a measure of the spread or dispersion of the
distribution about its center of gravity or expected value.

Expressing this central moment notation in specific GCS
<@
coefficient terms by equating A = I_o(z-uﬁki(z)dz one obtains the
original semi-invariant (moment) equations deduced by Thiele:
N =0

N =My - W
Ny = By = 3w +o2

= - - 42 2 - gut
Ay = B, = 4ugp = 3y + 12p07 - 6y

W

N = Wy =

N-Z( N;l] Wy,

where =R, =Ny, e, Oy =My for N>1. Here, the notation

( N;l) denotes the standard binomial coefficient

[ N-l] _ _ (N-1)!

n n! (N-n-1)!"
Continuing under the realization that

z = H (2)

z? = H,(z2)+1
Hy(z)+32

z' = H,(z2)+62%-3

N
w
"

3 .

) N1
no_ - 730 1] N-2n
z Hy(z) E;( L n!2"(N-2n) ! z

for N>1 where [g] denotes the greatest integer function, one
obtains:

w = [ zd#(z)az

= [T H(2)#(z)az
=c.
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This identity was acquired by substituting z=H (z) and then
using the weighted square error coefficient relationship
developed in Section A.3. This same telescoping moment

enerating procedure produces the following moment coefficient

identities:

B, = C,+1
By = C,+3C,
B, = C4+6C2+3

I

by = Ot 2 TToFiNCzn) T Oé-mn

n=1

for C,=1 and N>1. Solving the above identities for the
coefficients in terms of the various moments,

q =M

c = |.|2-1

C = "3—3”1

C, = |.14-6|.12+3

. .N

5 N

_ _q30
Cv = "N+,;$;‘;( L n!2"(N-2n) ! "N-x

for p,=1 and N>1. However, these relationships are nothing
more than the expected value of the referenced order Hermite
polynomials, i.e.,

¢, = E[H(2)] = E(z] =

and
Cy = E[Hy(2)]

2
= E[2"]+2 (-1)° n!2“(};I!—2n)! E(2"]

y N

= - n 1 -
uN+nZ=l( 1) n!2“(N-2n)!'1N'2n’ for N>1

In summary, it 1is this observation that makes it
convenient to generate the GCS coefficients from a data sample
drawn from a parent measurement population. In practice, this
"distribution-free" series expansion expresses the required
distribution in terms of the derivatives of the standardized
normal distribution (with zero mean and unit variance), where
the series coefficients are linear combinations of the random

data sample moments.
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To obtain a physical interpretation of these coefficients,
one should note that ¢=0 and C,=0 as a result of the
transformation

from measurement coordinates to z coordinates. Here,
X = the random measurement sample variate.
# = the unbiased measurement mean estimate.

¢ = the parent measurement population standard deviation
estimate.

Knowing that the odd order derivatives of ¥(z) are odd
functions and the even order derivatives of ¥(z) are even
functions, the effects of the remaining coefficients may be
interpreted. Excluding the first three coefficients of the
series, the addition of odd derivative terms (i.e., with their
respective C,, C, C,, ... coefficients) tends to produce
asymmetry or skewness relative to the standardized normal
distribution. On the other hand, the addition of even
derivative coefficient terms tend to flatten the resulting
distribution around its mean value.

Technically, the C; and ¢, coefficients have
statistical names. The C, coefficient is called the
distribution skewness, while C, is the statistical excess or
kurtosis. For example, if a unimodal distribution (i.e., with
a single maximum) has a longer tail to the right of the central
maximum than to the left, the distribution is said to be skewed
to the right or to have positive skewness. If the reverse is
true, it is said to be skewed to the left or have negative
skewness. Thus, distributions which are perfectly symmetrical
about their mean (i.e., such as the standardized normal) have
zero values for the C; coefficient. Consequently, a true
normal distribution is characterized by only three series
terms, Cy=1, C=0 and C,=0.
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APPENDIX B
DISCRETE VERSUS CONTINUOUS FREQUENCY DISTRIBUTIONS
B.1 Discrete Frequency Concerns

In statistical analysis, attention is often directed toward
the enumeration of grouped data which have some particular
attribute or characteristic. For instance, measurements falling
into a pre-assigned interval are considered to have a common length
attribute. A table of the relative proportions of measurements in
each class interval specifies the relative frequency distribution
or histogram of the inhabitants in each of the discrete class
intervals.

The practical difficulties involved in dealing with discrete
data arrangements or groupings are that the relative proportion
accuracy of grouped data cannot be relied on to produce smooth
histogram representations of the true distribution proportions.
This is partly due to the discrete interval quantization of finite
measurements and the fact that the class measurement proportions
are generally considered concentrated at the class interval mid-
points. In theory, this latter concern can be relieved by utilized
numerical gquadrature (integration) to compensate for lumping the
entire class interval frequency at its mid-point.

B.2 Numerical Quadrature Frequency Adjustment

As noted above, numerical quadrature can be used to adjust for
the concentration of histogram frequencies at their respective
class interval mid-points. To explore the ramifications of this
adjustment technique, one must first review the continuous
distribution properties of moments.

Letting f(x) be a continuous distribution, the integral
w
j_a° f(x)dx = 1

characterizes the probability of the distribution f(x). Con-
sequently, the contribution of any X, centered within a finite

interval of length h in the domain of integration is given by

h
5*2
j‘ f(x)dx.

X2

In contrast, the discrete element of area or probability attained
from a finite histogram representation of class interval length h

and concentrated frequency f located at X, is hf.

Extending this elemental notion to distribution moments,
[+ ]
o= ]'_m xtf (%) dx
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becomes the k™ moment of f(x) in the notation of Appendix A&,
Section A.4 and its discrete histogram counterpart is

N
M, =.% x?q.

The basic problem is the development of equivalency approx-
imations between these elemental forms.

Under the supposition that f(x) has close contact with the
x-axis at both extremities of the distribution:

1) [i;&f(x)dx is finite for all positive values of k.

2) &ﬂﬁ (¥f¥(x)] = 0 for all positive integral
vglges of j and k where f®(x) denotes the k" derivative
o (x).

The following relationship can be imposed between these elemental
forms:

© N
uo= ]_mx“f(x)dx =w JS} X£).

Here, w is the constant of proportionality. Utilizing the basic
Newton-Stirling formula of divided differences:

£(a+xw) = f(a)+xAf(a)+3x (x-1)Aa%f (a-w)+Z (x+1)x(x-1) A°f (a-w) +
A (x+1) X (x-1) (x-2) A*E (a-2w) +. . .

and rearranging terms

£(a+xw) = £(a)+x[Af(a)-3A%f (a-w) ]+

2
—;-‘!iAzf(a-w)+x—(-’§!—1)[A3f(a—w) -
2 2 :
2%t (a-2w) ]+%——11A4f(a-2w) Founn

Replacing the differences of even order within the brackets by
differences of odd order and using the divided difference
identities,

A%f (a-w)
A‘f (a-2w)

Af (a)-Af (a-w)
A’f (a-w) -A°f (a-2w)
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one obtains:

f(a+xw) = f(a)+x A’f (a-w) +

[Af(a)+Af(a-w) ]+
2 2!

e o 0 o

292 A - 3 - 2 (92
X (;c' 1) [ f(a W)+2Af(a 2w) ] + ﬂ:—'—ll A%f (a-2w) +

Upon substituting Xy for a and n for x and then integrating the

above expression from -— to 5,
1
2 2 17 4
f(x+nw)dn = f(xj)+ A f(x-w)~- 3——5—.—-—27 a f(x-2w)+....
..] . e o
Fi
In particular, when f(x)=e*,
Az‘f(xj-nw) = zz“exjsinha‘(%) .

Transforming variables by letting 6=g and dividing throughout
by e*, the above expression reduces to
1

1 2 _ 17
=1+ 35 sinh'® 351

Using this result in conjunction with the imposed
proportionality constant in the original elemental probability
form:

sinh'e +....

sinh8
e

Nl

2 N
I f(x)dx = w 2 xf|.
J2l
‘1‘%
With the added approximation that h=w, one can write

1 57 2

W I f(x)dx = I f (x;+nw)dn
-1

72 F]

Il . ]e

Substituting this relationship into the histogram moment form
N N
2 %L f = 2 XE(xtkw),
=l =

where the terms on both sides of this equality are the same but
counted differently. Therefore,

My N 51nh8 8’ e* g
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At this p01nt it is convenient to introduce the functional
E operator notatlon (see Reference 9) originally used by the
Engllsh mathemat1c1an, W. P. Sheppard, to express functional
operations in ordinary arithmetic terms. It is hypothesized that
this correspondence resulted in his name being identified with
this discrete moment correction procedure in the statistical
literature.

For the current appllcatlon, the E operator takes advantage
of a number of functional laws of correspondence that are
interrelated with the central difference operator A. To see
this, note that

N N n
= > Xf(x+kw) = 3 xF [ AZE"] £

J= =

—

for some arbitrarily large integer n. To evaluate A%E™!, 1let
dw aw

E=e* and A=e%*-1 so that
1l 2601 = cipn2 [ 1 dw
Z A°E™" = sinh [7 dx] .

Under this wvariable substitution, e=%wD where D denotes the

standard differential operator é% and

N 212 44 6
- w<D w'D w°D k
M, = w.E fj[l + 3!22+-5!24 * R e ]xj

=w2f[xJ 1) %472

5'24 k(k-1) (k=2) (k=3)%™* + ... | .

Substituting the relationship

mn N
W = ;{’éﬂ
into the above expansion
W
Moo= w + g5 K(k-D)w, + 5'24 k(k-1) (k-2) (k=3) B _,+ +...

Taking k=1, 2, 3, ... N in succession

M = CH

1
M, = W, + 15 W
M; = u, + %-v?m
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2
Wi, +

ool N

) o

m]w o[.-
>

Wi +

Solving these equations respectively for the B’s in terms of the
M ‘s and noting that w=h along with the condition that

© N
B, = f(x)dx = £ = = 1 by the relative frequency
0 i J

-0
assumption:

B, = M

B=NM

“2=M2"1Q;‘Mo
“3=M3‘%2'M1
”4=M4-%2M2+%%M0
u5=M5-§éﬁM3+%%3M,

N
me = 2[H)(27-1) B _b"

where the B coefficients are Bernoulli numbers.
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